Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Biol Macromol ; 262(Pt 2): 129984, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342260

RESUMO

The ATP-binding cassette (ABC) transporters have crucial roles in various biological processes such as growth, development and immune defense in eukaryotes. However, the roles of ABC transporters in the immune system of crustaceans remain elusive. In this study, 38 ABC genes were systematically identified and characterized in Penaeus vannamei. Bioinformation analysis revealed that PvABC genes were categorized into ABC A-H eight subfamilies with 17 full-transporters, 11 half transporters and 10 soluble proteins, and multiple immunity-related cis-elements were found in gene promoter regions. Expression analysis showed that most PvABC genes were widely and highly expressed in immune-related tissues and responded to the stimulation of Vibrio parahaemolyticus. To investigate whether PvABC genes mediated innate immunity, PvABCC5, PvABCF1 and PvABCB4 were selected for dsRNA interference experiment. Knockdown of PvABCF1 and PvABCC5 not PvABCB4 increased the cumulative mortality of P. vannamei and bacterial loads in hepatopancreas after infection with V. parahaemolyticus. Further analysis showed that the PvABCF1 and PvABCC5 knockdown decreased expression levels of NF-κB pathway genes and antimicrobial peptides (AMPs). Collectively, these findings indicated that PvABCF1 and PvABCC5 might restrict V. parahaemolyticus challenge by positively regulating NF-κB pathway and then promoting the expression of AMPs, which would contribute to overall understand the function of ABC genes in innate immunity of invertebrates.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Vibrio parahaemolyticus/genética , Penaeidae/genética , Penaeidae/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Artrópodes/genética , Transdução de Sinais , Imunidade Inata/genética , Trifosfato de Adenosina/metabolismo
2.
Fish Shellfish Immunol ; 133: 108532, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36639064

RESUMO

Antimicrobial peptides are small, cationic, and amphiphilic peptides found in most organisms, and many of these peptides have broad antimicrobial activity against Gram-negative, -positive bacteria and fungi. In the present study, a derivative of antimicrobial peptide Tatritin, 6His-Tatritin, was designed and expressed by Pichia pastoris using a constitutive vector pGAPZαA with the promoter of pGAP. The 6His-Tatritin had a broad-spectrum antibacterial activity based on the Oxford cup method and the micro broth dilution test. In addition, to explore the role of 6His-Tatritin in vivo, grass carps (Ctenopharyngodon idellus) were infected with Aeromonas hydrophila after they were fed with 6His-Tatritin as feed additives for 28 days. The results revealed that 6His-Tatritin could significantly up-regulate the expression levels of Hepcidin, Leap-2b, Nrf-2, CuZn-SOD and LZM (P < 0.05). In addition, 6His-Tatritin could significantly reduce the mortality (P < 0.05) and the intestinal injury of grass carps infected with bacteria. The 16S sequencing analysis showed that the structure of microbial community in intestine of fish was more diversified compared with control after treatment with 6His-Tatritin. In summary, the peptide of 6His-Tatritin could promote antimicrobial defense via regulating immune ability and intestinal microbial community in grass carp. This study provides an effective method and approach for the application of antimicrobial peptide Tatritin in aquaculture, and also provides insights into the function of antimicrobial peptides in immunity against pathogens in fish.


Assuntos
Anti-Infecciosos , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Transdução de Sinais , Suplementos Nutricionais/análise , Dieta/veterinária , NF-kappa B/metabolismo , Carpas/genética , Carpas/metabolismo , Intestinos , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos , Aeromonas hydrophila/fisiologia , Ração Animal/análise
3.
Front Public Health ; 10: 972311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36424963

RESUMO

Introduction: The mortality rate of non-HIV-infected Pneumocystis jirovecii pneumonia (PCP) is high. This research aimed to develop and validate two clinical tools for predicting the risk of death and intensive care unit (ICU) admission in non-HIV-infected patients with PCP to reduce mortality. Methods: A retrospective study was conducted at Peking Union Medical College Hospital between 2012 and 2021. All proven and probable non-HIV-infected patients with PCP were included. The least absolute shrinkage and selection operator method and multivariable logistic regression analysis were used to select the high-risk prognostic parameters. In the validation, the receiver operating characteristic curve and concordance index were used to quantify the discrimination performance. Calibration curves were constructed to assess the predictive consistency compared with the actual observations. A likelihood ratio test was used to compare the tool and CURB-65 score. Results: In total, 508 patients were enrolled in the study. The tool for predicting death included eight factors: age, chronic lung disease, respiratory rate, blood urea nitrogen (BUN), lactate dehydrogenase (LDH), cytomegalovirus infection, shock, and invasive mechanical ventilation. The tool for predicting ICU admission composed of the following factors: respiratory rate, dyspnea, lung moist rales, LDH, BUN, C-reactive protein/albumin ratio, and pleural effusion. In external validation, the two clinical models performed well, showing good AUCs (0.915 and 0.880) and fit calibration plots. Compared with the CURB-65 score, our tool was more informative and had a higher predictive ability (AUC: 0.880 vs. 0.557) for predicting the risk of ICU admission. Conclusion: In conclusion, we developed and validated tools to predict death and ICU admission risks of non-HIV patients with PCP. Based on the information from the tools, clinicians can tailor appropriate therapy plans and use appropriate monitoring levels for high-risk patients, eventually reducing the mortality of those with PCP.


Assuntos
Pneumonia por Pneumocystis , Humanos , Estudos Retrospectivos , Unidades de Terapia Intensiva , Hospitalização , Fatores de Risco
4.
Gene ; 834: 146608, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35659893

RESUMO

Myod and Myf5 are muscle-specific basic helix-loop-helix (bHLH) transcription factors that play essential roles in regulating skeletal muscle development and growth. In order to investigate potential function of myod and myf5 of Megalobrama amblycephala, an economically important freshwater fish species, in the present study, we characterized the sequences and expression profiles of M. amblycephala myod and myf5. The open reading frame (ORF) sequences of myod and myf5 encoded 275 and 240 amino acids, respectively, possessing analogous structure with the highly conserved domains, bHLH and C-terminal helix III domains. Spatio-temporal expression patterns revealed that myod and myf5 were predominant in skeletal muscle with the highest expression in white muscle, and the highest at 10 days post-hatching (dph) and the segmentation period, respectively. Furthermore, we evaluated the effects of lipopolysaccharide (LPS) on the expression of muscle-related genes in white and red muscle, and proliferation and differentiation of satellite cells. The myod, myf5 and pax-7 expression generally increased and then decreased with increase of LPS concentration and treatment time in red muscle, while these genes showed inconsistent expression patterns in white muscle. In addition, LPS administration caused the frequency increase of satellite cells in red and white muscle especially at 3 and 7 days after LPS-injection.


Assuntos
Cipriniformes , Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular , Cipriniformes/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Fatores de Regulação Miogênica/genética
5.
Front Immunol ; 13: 794779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401525

RESUMO

Humoral immunity is the first line of defense in the invertebrate immune system, and antimicrobial peptides play an important role in this biological process. A novel antimicrobial peptide, termed Tatritin, was identified and characterized in hemolymph of Chinese horseshoe crab, Tachypleus tridentatus, infected with Gram-negative bacteria via transcriptome analysis. Tatritin was significantly induced by bacterial infection in hemolymph and gill. The preprotein of Tatritin consists of a signal peptide (21 aa) and a mature peptide (47 aa) enriched by cysteine. The putative mature peptide was 5.6 kDa with a theoretical isoelectric point (pI) of 9.99 and showed a α-helix structure in the N-terminal and an anti-parallel ß-sheet structure in the cysteine-stabilized C-terminal region. The chemically synthesized peptide of Tatritin exhibited a broad spectrum of antimicrobial activity against Gram-negative and Gram-positive bacteria and fungi. Furthermore, Tatritin may recognize and inhibit pathogenic microorganisms by directly binding to LPS, DNA, and chitin. In addition, administration of Tatritin reduced the mortality of zebrafish after bacterial infection. Due to its broad-spectrum antimicrobial activity in vivo and in vitro and the sensitivity to drug-resistant bacterial strains, Tatritin peptide can be used as a new type of drug for infection treatment or as an immune enhancer in animals.


Assuntos
Anti-Infecciosos , Caranguejos Ferradura , Animais , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos , China , Cisteína , Peptídeos , Peixe-Zebra
6.
Gene ; 827: 146455, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35395368

RESUMO

Skeletal muscle myogenesis and injury-induced muscle regeneration contribute to muscle formation. Skeletal muscle stem cells, termed satellite cells (SCs), proliferate to repair injured muscle. To identify the molecular mechanism of regeneration after muscle injury as well as the genes related to muscle development in fish, in this study, the immunohistochemistry and the high-throughput RNA sequencing (RNA-seq) analysis were performed after Megalobrama amblycephala muscle was injured by needle stab. The results showed that paired box7-positive (Pax7+) SCs increased, and peaked at 96 to 144 h-post injury (hpi). The 6729 differentially expressed genes (DEGs), including 2125 up-regulated and 4604 down-regulated genes were found. GO terms significantly enriched by DEGs contained intercellular connections, signaling transduction and enzyme activity. KEGG enrichment analysis showed that most of the pathways were related to immunity, metabolism and cells related molecules, including actin skeleton regulation, Epstein Barr virus infection and plaque adhesion. The WGCNA results revealed that actin cytoskeleton and lipid metabolism related genes probably played crucial roles during repair after muscle injury. Collectively, all these results will provide new insights into the molecular mechanisms underlying muscle injury repair of fish.


Assuntos
Cyprinidae , Cipriniformes , Infecções por Vírus Epstein-Barr , Animais , Cyprinidae/genética , Cyprinidae/metabolismo , Cipriniformes/genética , Infecções por Vírus Epstein-Barr/metabolismo , Perfilação da Expressão Gênica/métodos , Herpesvirus Humano 4 , Músculo Esquelético , Músculos/metabolismo , RNA-Seq
7.
Biochim Biophys Acta Gen Subj ; 1866(6): 130133, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35346765

RESUMO

BACKGROUND: Zebrafish miR-731 is orthologous of human miR-425, which has been demonstrated to have cardio-protective roles by a variety of mechanisms. The miR-731 morphants show pericardium enlargement, and many DEGs (differentially expressed genes) are enriched in 'Cardiac muscle contraction' and 'Calcium signaling pathway', implying that miR-731 plays a potential role in heart function and development. However,the in vivo physiological role of miR-731 in the heart needs to be fully defined. METHODS: Zebrafish miR-731 morphants were generated by morpholino knockdown, and miR-731 knockout zebrafish was generated by CRISRP/Cas9. We observed cardiac morphogenesis based on whole-mount in situ hybridization. Furthermore, RNA-seq and qRT-PCR were used to elucidate the molecular mechanism and analyze the gene expression. Double luciferase verification and Western blot were used to verify the target gene. RESULTS: The depletion of miR-731 in zebrafish embryos caused the deficiency of cardiac development and function, which was associated with reduced heart rate, ventricular enlargement and heart looping disorder. In addition, mechanistic study demonstrated that Calcineurin/Nfatc3a signaling involved in miR-731 depletion induced abnormal cardiac function and developmental defects. CONCLUSION: MiR-731 regulates cardiac function and morphogenesis through Calcineurin/Nfatc3a signaling. GENERAL SIGNIFICANCE: Our studies highlight the potential importance of miR-731 in cardiac development.


Assuntos
MicroRNAs , Peixe-Zebra , Animais , Calcineurina/genética , Calcineurina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Morfogênese/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-34748971

RESUMO

Nitrite stress is a major environmental factor that limits aquatic animal growth, reproduction and survival. Even so, some shrimps still can withstand somewhat high concentrations of nitrite environment. However, few studies have been conducted about the tolerance molecular mechanism of Litopenaeus vannamei in the high concentration nitrite. To identify the genes and pathways involved in the regulation of nitrite tolerance, we performed comparative transcriptomic analysis in the L. vannamei nitrite-tolerant (NT) and nitrite-sensitive (NS) families, and untreated shrimps were used as the control group. After 24 h of nitrite exposure (NaNO2, 112.5 mg/L), a total of 1521 and 868 differentially expressed genes (DEGs) were obtained from NT compared with NS and control group, respectively. Functional enrichment analysis revealed that most of these DEGs were involved in immune defense, energy metabolism processes and endoplasmic reticulum (ER) stress. During nitrite stress, energy metabolism in NT was significantly enhanced by activating the related genes expression of oxidative phosphorylation (OXPHOS) pathway and tricarboxylic acid (TCA) cycle. Meanwhile, some DEGs involved in innate immunity- related genes and pathways, and ER stress responses also were highly expressed in NT. Therefore, we speculate that accelerated energy metabolism, higher expression of immunity and ER related genes might be the important adaptive strategies for NT in relative to NS under nitrite stress. These results will provide new insights on the potential tolerant molecular mechanisms and the breeding of new varieties of nitrite tolerant L. vannamei.


Assuntos
Brânquias/fisiologia , Nitritos/toxicidade , Penaeidae/efeitos dos fármacos , Penaeidae/genética , Estresse Fisiológico/genética , Animais , Ecotoxicologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Penaeidae/fisiologia , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/imunologia , Poluentes Químicos da Água/toxicidade
9.
BMC Infect Dis ; 21(1): 441, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33985440

RESUMO

OBJECTIVES: We analysed the peripheral blood lymphocyte subsets of human immunodeficiency virus (HIV)-negative patients infected with pneumocystis pneumonia (PCP) to determine the relationships between the levels of different types of lymphocytes and the prognosis of patients. METHODS: We retrospectively reviewed HIV-negative patients with PCP diagnosed in our department. All the eligible patients underwent lymphocyte subset analysis on admission. RESULTS: A total of 88 HIV-negative PCP patients were enrolled in the study. In univariate analyses, low CD4+ T cell count, low CD8+ T cell count, and low natural killer cell (NK cell) count were associated with higher in-hospital mortality. CD8+ T cell count ≤300/µL was found to be an independent risk factor for poor prognosis in multivariate logistical regression analysis (p = 0.015, OR = 11.526, 95% CI = 1.597-83.158). Although low CD4+ T cell and NK cell counts were not independent risk factors, the mortality rates of PCP patients decreased as the CD4+ T cell and NK cell counts increased. CONCLUSION: The immune process of Pneumocystis jirovecii infection is complex but important. We propose that lymphocyte subsets could give clinicians a better understanding of patient immune status, helping with the early identification of potentially lethal infections and treatment decision making, such as adjusting the immunosuppressive regimen and choosing an appropriate patient monitoring level.


Assuntos
Subpopulações de Linfócitos/citologia , Pneumonia por Pneumocystis/imunologia , Pneumonia por Pneumocystis/mortalidade , Adulto , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Feminino , Humanos , Células Matadoras Naturais/citologia , Modelos Logísticos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Pneumonia por Pneumocystis/diagnóstico , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida
11.
Artigo em Inglês | MEDLINE | ID: mdl-32200130

RESUMO

MicroRNAs (miRNAs), as important regulators of post-transcriptional gene expression, play important roles in the occurrence and function of organs. In this study, morpholino (MO) knockdown of miR-462/miR-731 was used to investigate the potential mechanisms of the miR-462-731 cluster during zebrafish liver development. The results showed significant reduction of digestive organs, especially liver and exocrine pancreas after the miR-462/miR-731 knockdown, and those phenotypes could be partially rescued by corresponding miRNA duplex. Acinar cells of the exocrine pancreas were also severely affected with pancreatic insufficiency. In particular, knockdown of miR-462 caused pancreas morphogenesis abnormity with specific bilateral exocrine pancreas. Additionally, it was found that miR-731 played a role in liver and exocrine pancreas development by directly targeting dkk3b, instead of the down-regulation of Wnt/ß-catenin signaling. These findings contribute significantly to our understanding of molecular mechanisms of miR-462-731 cluster in development of digestive organs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Pâncreas Exócrino/embriologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Pâncreas Exócrino/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
13.
Sci Total Environ ; 711: 134416, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32000302

RESUMO

Nitrite accumulation in aquatic environments is a potential risk factor that disrupts multiple physiological functions in aquatic animals. In this study, the physiology, transcriptome and metabolome of the control group (LV-C), nitrite-tolerance group (LV-NT) and nitrite-sensitive group (LV-NS) were investigated to identify the stress responses and mechanisms underlying the nitrite tolerance of Litopenaeus vannamei. After LV-NT and LV-NS were subjected to nitrite stress, the hemocyanin contents were significantly decreased, and hepatopancreas showed severe histological damage compared with LV-C. Likewise, the antioxidant enzymes were also significantly changed after nitrite exposure. The transcriptome data revealed differentially expressed genes associated with immune system, cytoskeleton remodeling and apoptosis in LV-NT and LV-NS. The combination of transcriptomic and metabolomic analysis revealed nitrite exposure disturbed metabolism processes in L. vannamei, including amino acid metabolism, nucleotide metabolism and lipid metabolism. The multiple comparative analysis implicated that higher nitrite tolerance of LV-NT than LV-NS may be attributed to enhanced hypoxia inducible factor-1α expression to regulate energy supply and gaseous exchange. Moreover, LV-NT showed higher antioxidative ability, detoxification gene expression and enhanced fatty acids contents after nitrite exposure in relative to LV-NS. Collectively, all these results will greatly provide new insights into the molecular mechanisms underlying the stress responses and tolerance of nitrite exposure in L. vannamei.


Assuntos
Metabolômica , Penaeidae , Transcriptoma , Animais , Hepatopâncreas , Nitritos , Estresse Fisiológico
14.
Front Immunol ; 11: 584808, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584649

RESUMO

Chinese horseshoe crab, Tachypleus tridentatus, is an ancient marine arthropod with a long evolutionary history. As a kind of living fossil species, the pathogen defenses of horseshoe crabs entirely depend on the innate immune system. Although, there are abundant immune molecules found in the horseshoe crab hemolymph, the biological mechanisms underlying their abilities of distinguishing and defending against invading microbes are still unclear. In this study, we used high-throughput sequencing at mRNA and protein levels and bioinformatics analysis methods to systematically analyze the innate immune response to Gram-negative bacteria in hemolymph of Chinese horseshoe crab. These results showed that many genes in the complement and coagulation cascades, Toll, NF-κB, C-type lectin receptor, JAK-STAT, and MAPK signaling pathways, and antimicrobial substances were activated at 12 and 24 h post-infection, suggesting that Gram-negative bacteria could activate the hemolymph coagulation cascade and antibacterial substances release via the above pathways. In addition, we conjectured that Toll and NF-κB signaling pathway were most likely to participate in the immune response to Gram-negative bacteria in hemolymph of horseshoe crab through an integral signal cascade. These findings will provide a useful reference for exploring the ancient original innate immune mechanism.


Assuntos
Bactérias Gram-Negativas/imunologia , Hemolinfa/imunologia , Hemolinfa/microbiologia , Caranguejos Ferradura/imunologia , Caranguejos Ferradura/microbiologia , Animais , China , Imunidade Inata/imunologia , Lectinas/imunologia , Transdução de Sinais/imunologia
15.
Int J Infect Dis ; 88: 141-148, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31442630

RESUMO

OBJECTIVES: The aim of this study was to investigate the efficacy of combination therapy of caspofungin and TMP/SMZ (trimethoprim/sulfamethoxazole) in moderate to severe pneumocystis jirovecii pneumonia (PJP) in patients without human immunodeficiency virus infection (HIV) and the relationship between therapeutic effect and plasma (1, 3) Beta-d-Glucan (BDG) levels. METHODS: We retrospectively reviewed HIV-negative patients with PJP diagnosed in our department, who were treated with combination therapy of caspofungin and TMP/SMZ or monotherapy of TMP/SMZ during a six and a half year period. RESULTS: A total of 126 moderate to severe PJP patients were enrolled in the study. In the multivariate analysis, low lymphocyte counts, high serum lactate dehydrogenase levels at the diagnosis of PJP and progression to shock were significant risk factors for death. In all patients, there was no significant difference in risk of death at 3 months. In the group of BDG≥800pg/m, patients receiving combination therapy was associated with a significantly decreased risk of death at 3 months, whereas in the group of BDG<800pg/ml, there were no statistically significant difference in survival rate between the two treatment regimens. CONCLUSION: High initial plasma (1, 3) Beta-d-Glucan concentration may be a predictor of satisfactory caspofungin response to HIV-negative patients with PJP. Based on our findings, we suggest the choice of combination therapy with caspofungin and TMP/SMZ as the initial treatment when BDG≥800pg/ml in moderate to severe HIV-negative patients with PJP.


Assuntos
Antifúngicos/uso terapêutico , Caspofungina/administração & dosagem , Pneumonia por Pneumocystis/tratamento farmacológico , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , beta-Glucanas/sangue , Adulto , Monitoramento de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pneumocystis carinii/efeitos dos fármacos , Pneumocystis carinii/fisiologia , Pneumonia por Pneumocystis/sangue , Pneumonia por Pneumocystis/diagnóstico , Pneumonia por Pneumocystis/mortalidade , Estudos Retrospectivos , Fatores de Risco
16.
Ecotoxicol Environ Saf ; 180: 491-500, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31121556

RESUMO

Ammonia, one of the major limiting environment factors in aquaculture, may pose a threat to the shrimp growth, reproduction and survival. In this study, to understand molecular differences of transcriptomic and metabolomic responses and investigate the tolerance mechanisms underlying ammonia stress in Litopenaeus vannamei, ammonia-tolerant family (LV-AT) and ammonia-sensitive family (LV-AS) of these two extreme families were exposed to high-concentration (NH4Cl, 46 mg/L) ammonia for 24 h. The comparative transcriptome analysis between ammonia-treated and control (LV-C) groups revealed involvement of immune defense, cytoskeleton remodeling, antioxidative system and metabolic pathway in ammonia-stress response of L. vannamei. Likewise, metabolomics analysis showed that ammonia exposure could disturb amino acid metabolism, nucleotide metabolism and lipid metabolism, with metabolism related-genes changed according to RNA-seq analysis. The comparison of metabolite and transcript profiles between LV-AT and LV-AS indicated that LV-AT used the enhanced glycolysis and tricarboxylic acid (TCA) cycle strategies for energy supply and ammonia excretion to adapt high-concentration ammonia. Furthermore, some of genes involved in the detoxification and ammonia excretion were highly expressed in LV-AT. We speculate that the higher ability of ammonia excretion and detoxification and the accelerated energy metabolism for energy supplies might be the adaptive strategies for LV-AT relative to LV-AS after ammonia stress. Collectively, the combination of transcriptomics and metabolomics results will greatly contribute to incrementally understand the stress responses on ammonia exposure to L. vannamei and supply molecular level support for evaluating the environmental effects of ammonia on aquatic organisms. The results further constitute new sights on the potential molecular mechanisms of ammonia adaptive strategies in shrimps at the transcriptomics and metabolomics levels.


Assuntos
Amônia/toxicidade , Metabolismo Energético/efeitos dos fármacos , Penaeidae/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Tolerância a Medicamentos , Perfilação da Expressão Gênica , Metabolômica , Penaeidae/genética , Penaeidae/metabolismo
17.
Cell Death Differ ; 26(8): 1531-1544, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30459392

RESUMO

MicroRNAs (miRNAs) play significant roles in both embryonic hematopoiesis and hematological malignancy. Zebrafish miR-462-731 cluster is orthologous of miR-191-425 in human which regulates proliferation and tumorigenesis. In our previous work, miR-462-731 was found highly and ubiquitously expressed during early embryogenesis. In this study, by loss-of-function analysis (morpholino knockdown combined with CRISRP/Cas9 knockout) and mRNA profiling, we suggest that miR-462-731 is required for normal embryonic development by regulating cell survival. We found that loss of miR-462/miR-731 caused a remarkable decrease in the number of erythroid cells as well as an ectopic myeloid cell expansion at 48 hpf, suggesting a skewing of myeloid-erythroid lineage differentiation. Mechanistically, miR-462-731 provides an instructive input for pu.1-dependent primitive myelopoiesis through regulating etsrp/scl signaling combined with a novel pu.1/miR-462-731 feedback loop. On the other hand, morpholino (MO) knockdown of miR-462/miR-731 resulted in an expansion of posterior blood islands at 24 hpf, which is a mild ventralization phenotype resulted from elevation of BMP signaling. Rescue experiments with both BMP type I receptor inhibitor dorsomorphin and alk8 MO indicate that miR-462-731 acts upstream of alk8 within the BMP/Smad signaling pathway and functions as a novel endogenous BMP antagonist. Besides, an impairment of angiogenesis was observed in miR-462/miR-731 morphants. The specification of arteries and veins was also perturbed, as characterized by the irregular patterning of efnb2a and flt4 expression. Our study unveils a previously unrecognized role of miR-462-731 in BMP/Smad signaling mediated hematopoietic specification of mesodermal progenitors and demonstrates a miR-462-731 mediated regulatory mechanism driving primitive myelopoiesis in the ALPM. We also show a requirement for miR-462-731 in regulating arterial-venous specification and definitive hematopoietic stem cell (HSC) production. The current findings might provide further insights into the molecular mechanistic basis of miRNA regulation of embryonic hematopoiesis and hematological malignancy.


Assuntos
Hematopoese , MicroRNAs/metabolismo , Mielopoese , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/genética , Peixe-Zebra
18.
Gene ; 678: 219-225, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30086363

RESUMO

HIF prolyl hydroxylase 1 (PHD1) functions in prolyl hydroxylation on mammal hypoxia-inducible factors (HIF), important transcription factors involved in hypoxia, however the roles of Phd1 in fish remain unclear. In this study, the full-length cDNA and promoter sequences of blunt snout bream (Megalobrama amblycephala) phd1 gene were isolated by a modified RACE strategy. The phd1 cDNA was 2672 bp for encoding 481 amino acid residues. In silico assays indicated that phd1 had 5 exons, and a 348 bp CpG island in the exon1, and several transcription factor binding sites (CAAT box, HRE, ARNT, FOX, etc) were also found on the promoter. The quantitative real-time PCR results suggested that phd1 mRNA was constitutively expressed in all detected tissues, and higher in the blood, brain and heart in normoxia, but significantly decreased after hypoxia in all detected tissues except for gill. Western blot assays indicated that two Phd1 isoforms were generated by alternative translation initiation. Moreover, these two isoforms were both localized in the nucleus, therein only the senior isoform promoted cell proliferation. Taken together, the present study firstly describes the functions of M. amblycephala two Phd1 isoforms in hypoxia and cell proliferation.


Assuntos
Cyprinidae/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Processamento Alternativo , Animais , Núcleo Celular/metabolismo , Clonagem Molecular , Cyprinidae/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Distribuição Tecidual
19.
Oncotarget ; 8(43): 73846-73859, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088751

RESUMO

Hypoxia is a unique environmental stress. Hypoxia inducible factor-lα (HIF-lα) is a major transcriptional regulator of cellular adaptations to hypoxic stress. MicroRNAs (miRNAs) as posttranscriptional gene expression regulators occupy a crucial role in cell survival under low-oxygen environment. Previous evidences suggested that miR-125c is involved in hypoxia adaptation, but its precise biological roles and the regulatory mechanism underlying hypoxic responses remain unknown. The present study showed that zebrafish miR-125c is upregulated by hypoxia in a Hif-lα-mediated manner in vitro and in vivo. Dual-luciferase assay revealed that cdc25a is a novel target of miR-125c. An inverse correlation between miR-125c and cdc25a was further confirmed in vivo, suggesting miR-125c as a crucial physiological inhibitor of cdc25a which responds to cellular hypoxia. Overexpression of miR-125c suppressed cell proliferation, led to cell cycle arrest at the G1 phase in ZF4 cells and induced apoptotic responses during embryo development. More importantly, miR-125c overexpression resulted in severe malformation and reduction of motility during zebrafish embryonic development. Taken together, we conclude that miR-125c plays a pivotal role in cellular adaptations to hypoxic stress at least in part through the Hif-1α/miR-125c/cdc25a signaling and has great impact on zebrafish early embryonic development.

20.
Biochemistry (Mosc) ; 82(7): 844-851, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28918749

RESUMO

Low temperature frequently influences growth, development, and even survival of aquatic animals. In the present study, physiological and molecular responses to low temperature in Litopenaeus vannamei were investigated. The cDNA sequences of two oxygen-carrying proteins, cytoglobin (Cygb) and neuroglobin (Ngb), were isolated. Protein structure analysis revealed that both proteins share a globin superfamily domain. Real-time PCR analysis indicated that Cygb and Ngb mRNA levels gradually increased during decrease in temperatures from 25 to 15°C and then decreased at 10°C in muscle, brain, stomach, and heart, except for a continuing increase in gills, whereas they showed a different expression trend in the hepatopancreas. Hemocyanin concentration gradually reduced as the temperature decreased. Moreover, the activities of respiratory metabolic enzymes including lactate dehydrogenase (LDH) and succinate dehydrogenase (SDH) were measured, and it was found that LDH activity gradually increased while SDH activity decreased after low-temperature treatment. Finally, damage to gill structure at low temperature was also observed, and this intensified with further decrease in temperature. Taken together, these results show that low temperature has an adverse influence in L. vannamei, which contributes to systematic understanding of the adaptation mechanisms of shrimp at low temperature.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica , Globinas/genética , Proteínas do Tecido Nervoso/genética , Penaeidae/anatomia & histologia , Penaeidae/fisiologia , Animais , Citoglobina , Bases de Dados Factuais , Brânquias/anatomia & histologia , Brânquias/metabolismo , Globinas/química , Globinas/metabolismo , Hemocianinas/análise , Hepatopâncreas/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Penaeidae/enzimologia , Penaeidae/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...